Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Daniela Matuozzo; Estelle Talouarn; Astrid Marchal; Jeremy Manry; Yoann Seeleuthner; Yu Zhang; Alexandre Bolze; Matthieu Chaldebas; Baptiste Milisavljevic; Peng Zhang; Adrian Gervais; Paul Bastard; Takaki Asano; Lucy Bizien; Federica Barzaghi; Hassan Abolhassani; Ahmad Abou Tayoun; Alessandro Aiuti; Ilad Alavi Darazam; Luis Allende; Rebeca Alonso-Arias; Andres Augusto Arias; Gokhan Aytekin; Peter Bergman; Simone Bondesan; Yenan Bryceson; Ingrid Bustos; Oscar Cabrera-Marante; Sheila Carcel; Paola Carrera; Giorgio Casari; Khalil Chaibi; Roger Colobran; Antonio Condino-Neto; Laura Covill; Loubna El Zein; Carlos Flores; Peter Gregersen; Marta Gut; Filomeen Haerynck; Rabih Halwani; Selda Hancerli; Lennart Hammarstrom; Nevin Hatipoglu; Adem Karbuz; Sevgi Keles; Christele Kyheng; Rafael Leon-Lopez; Jose Luis Franco; Davood Mansouri; Javier Martinez-Picado; Ozge Metin Akcan; Isabelle Migeotte; Pierre-Emmanuel Morange; Guillaume Morelle; Andrea Martin-Nalda; Giuseppe Novelli; Antonio Novelli; Tayfun Ozcelik; Figen Palabiyik; Qiang Pan-Hammarstrom; Rebeca Perez de Diego; Laura Planas-Serra; Daniel Pleguezuelo; Carolina Prando; Aurora Pujol; Luis Felipe Reyes; Jacques Riviere; Carlos Rodriguez-Gallego; Julian Rojas; Patrizia Rovere-Querini; Agatha Schluter; Mohammad Shahrooei; Ali Sobh; Pere Soler-Palacin; Yacine Tandjaoui-Lambiotte; Imran Tipu; Cristina Tresoldi; Jesus Troya; Diederik van de Beek; Mayana Zatz; Pawel Zawadzki; Saleh Zaid Al-Muhsen; Hagit Baris-Feldman; Manish Butte; Stefan Constantinescu; Megan Cooper; Clifton Dalgard; Jacques Fellay; James Heath; Yu-Lung Lau; Richard Lifton; Tom Maniatis; Trine Mogensen; Horst von Bernuth; Alban Lermine; Michel Vidaud; Anne Boland; Jean-Francois Deleuze; Robert Nussbaum; Amanda Kahn-Kirby; France Mentre; Sarah Tubiana; Guy Gorochov; Florence Tubach; Pierre Hausfater; Isabelle Meyts; Shen-Ying Zhang; Anne Puel; Luigi Notarangelo; Stephanie Boisson-Dupuis; Helen Su; Bertrand Boisson; Emmanuelle Jouanguy; Jean-Laurent Casanova; Qian Zhang; Laurent Abel; Aurelie Cobat.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.10.22.22281221

ABSTRACT

Background We previously reported inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity in 1-5% of unvaccinated patients with life-threatening COVID-19, and autoantibodies against type I IFN in another 15-20% of cases. Methods We report here a genome-wide rare variant burden association analysis in 3,269 unvaccinated patients with life-threatening COVID-19 (1,301 previously reported and 1,968 new patients), and 1,373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. A quarter of the patients tested had antibodies against type I IFN (234 of 928) and were excluded from the analysis. Results No gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI:1.5-528.7, P=1.1x10-4), in analyses restricted to biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70 [95%CI:1.3-8.2], P=2.1x10-4). Adding the recently reported TYK2 COVID-19 locus strengthened this enrichment, particularly under a recessive model (OR=19.65 [95%CI:2.1-2635.4]; P=3.4x10-3). When these 14 loci and TLR7 were considered, all individuals hemizygous (n=20) or homozygous (n=5) for pLOF or bLOF variants were patients (OR=39.19 [95%CI:5.2-5037.0], P=4.7x10-7), who also showed an enrichment in heterozygous variants (OR=2.36 [95%CI:1.0-5.9], P=0.02). Finally, the patients 13 with pLOF or bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years; P=1.68x10-5). Conclusions Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie lifethreatening COVID-19, particularly with recessive inheritance, in patients under 60 years old.


Subject(s)
Metabolism, Inborn Errors , Pneumonia , Severe Acute Respiratory Syndrome , COVID-19
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.04.18.488668

ABSTRACT

ABSTRACT Pre-mRNA splicing is initiated with the recognition of a single-nucleotide intronic branchpoint (BP) within a BP motif by spliceosome elements. Fifty-six rare variants in 44 human genes have been reported to alter splicing and cause disease by disrupting BP. However, until now, no computational approach has been available to efficiently detect such variants in next-generation sequencing (NGS) data. We established a comprehensive human genome-wide BP database by integrating existing BP data, and by generating new BP data from RNA-seq of lariat debranching enzyme DBR1-mutated patients and from machine-learning predictions. We in-depth characterize multiple features of BP in major and minor introns, and find that BP and BP-2 (two-nucleotides upstream of BP) positions exhibit a lower rate of variation in human populations and higher evolutionary conservation than the intronic background, whilst being comparable to the exonic background. We develop BPHunter as a genome-wide computational approach to systematically and efficiently detect intronic variants that may disrupt BP recognition in NGS data. BPHunter retrospectively identifies 48 of the 56 known pathogenic BP mutations in which we summarize a strategy for prioritizing BP mutation candidates, and the remaining 8 all create AG dinucleotides between BP and acceptor site which is probably the reason for mis-splicing. We demonstrate the utility of BPHunter prospectively by using it to identify a novel germline heterozygous BP variant of STAT2 in a patient with critical COVID-19 pneumonia, and a novel somatic intronic 59-nucleotide deletion of ITPKB in a lymphoma patient, both of which we validate experimentally. BPHunter is publicly available from https://hgidsoft.rockefeller.edu/BPHunter and https://github.com/casanova-lab/BPHunter .


Subject(s)
Lymphoma , Pneumonia , COVID-19
3.
Jeremy Manry; Paul Bastard; Adrian Gervais; Tom Le Voyer; Jérémie Rosain; Quentin Philippot; Eleftherios Michailidis; Hans-Heinrich Hoffmann; Shohei Eto; Marina Garcia-Prat; Lucy Bizien; Alba Parra-Martínez; Rui Yang; Liis Haljasmägi; Mélanie Migaud; Karita Särekannu; Julia Maslovskaja; Nicolas de Prost; Yacine Tandjaoui-Lambiotte; Charles-Edouard Luyt; Blanca Amador-Borrero; Alexandre Gaudet; Julien Poissy; Pascal Morel; Pascale Richard; Fabrice Cognasse; Jesus Troya; Sophie Trouillet-Assant; Alexandre Belot; Kahina Saker; Pierre Garçon; Jacques Rivière; Jean-Christophe Lagier; Stéphanie Gentile; Lindsey Rosen; Elana Shaw; Tomohiro Morio; Junko Tanaka; David Dalmau; Pierre-Louis Tharaux; Damien Sene; Alain Stepanian; Bruno Mégarbane; Vasiliki Triantafyllia; Arnaud Fekkar; James Heath; Jose Franco; Juan-Manuel Anaya; Jordi Solé-Violán; Luisa Imberti; Andrea Biondi; Paolo Bonfanti; Riccardo Castagnoli; Ottavia Delmonte; Yu Zhang; Andrew Snow; Steve Holland; Catherine Biggs; Marcela Moncada-Vélez; Andrés Arias; Lazaro Lorenzo; Soraya Boucherit; Dany Anglicheau; Anna Planas; Filomeen Haerynck; Sotirija Duvlis; Robert Nussbaum; Tayfun Ozcelik; Sevgi Keles; Aziz Bousfiha; Jalila El Bakkouri; Carolina Ramirez-Santana; Stéphane Paul; Qiang Pan-Hammarstrom; Lennart Hammarstrom; Annabelle Dupont; Alina Kurolap; Christine Metz; Alessandro Aiuti; Giorgio Casari; Vito Lampasona; Fabio Ciceri; Lucila Barreiros; Elena Dominguez-Garrido; Mateus Vidigal; Mayana Zatz; Diederik van de Beek; Sabina Sahanic; Ivan Tancevski; Yurii Stepanovskyy; Oksana Boyarchuk; Yoko Nukui; Miyuki Tsumura; Loreto Vidaur; Stuart Tangye; Sonia Burrel; Darragh Duffy; Lluis Quintana-Murci; Adam Klocperk; Nelli Kann; Anna Shcherbina; Yu-Lung Lau; Daniel Leung; Matthieu Coulongeat; Julien Marlet; Rutger Koning; Luis Reyes; Angélique Chauvineau-Grenier; Fabienne Venet; guillaume monneret; Michel Nussenzweig; Romain Arrestier; Idris Boudhabhay; Hagit Baris-Feldman; David Hagin; Joost Wauters; Isabelle Meyts; Adam Dyer; Sean Kennelly; Nollaig Bourke; Rabih Halwani; Fatemeh Sharif-Askari; Karim Dorgham; Jérôme Sallette; Souad Mehlal-Sedkaoui; Suzan AlKhater; Raúl Rigo-Bonnin; Francisco Morandeira; Lucie Roussel; Donald Vinh; Christian Erikstrup; Antonio Condino-Neto; Carolina Prando; Anastasiia Bondarenko; András Spaan; Laurent Gilardin; Jacques Fellay; Stanislas Lyonnet; Kaya Bilguvar; Richard Lifton; Shrikant Mane; Mark Anderson; Bertrand Boisson; Vivien Béziat; Shen-Ying Zhang; Evangelos Andreakos; Olivier Hermine; Aurora Pujol; Pärt Peterson; Trine Hyrup Mogensen; Lee Rowen; James Mond; Stéphanie Debette; Xavier deLamballerie; Charles Burdet; Lila Bouadma; Marie Zins; Pere Soler-Palacin; Roger Colobran; Guy Gorochov; Xavier Solanich; Sophie Susen; Javier Martinez-Picado; Didier Raoult; Marc Vasse; Peter Gregersen; Carlos Rodríguez-Gallego; Lorenzo Piemonti; Luigi Notarangelo; Helen Su; Kai Kisand; Satoshi Okada; Anne Puel; Emmanuelle Jouanguy; Charles Rice; Pierre Tiberghien; Qian Zhang; Jean-Laurent Casanova; Laurent Abel; Aurélie Cobat.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1225906.v1

ABSTRACT

SARS-CoV-2 infection fatality rate (IFR) doubles with every five years of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-β are found in ~20% of deceased patients across age groups. In the general population, they are found in ~1% of individuals aged 20-70 years and in >4% of those >70 years old. With a sample of 1,261 deceased patients and 34,159 uninfected individuals, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to non-carriers. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRD was 17.0[95% CI:11.7-24.7] for individuals under 70 years old and 5.8[4.5-7.4] for individuals aged 70 and over, whereas, for autoantibodies neutralizing both molecules, the RRD was 188.3[44.8-774.4] and 7.2[5.0-10.3], respectively. IFRs increased with age, from 0.17%[0.12-0.31] for individuals <40 years old to 26.7%[20.3-35.2] for those ≥80 years old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84%[0.31-8.28] to 40.5%[27.82-61.20] for the same two age groups, for autoantibodies neutralizing both molecules. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, particularly those neutralizing both IFN-α2 and -ω. Remarkably, IFR increases with age, whereas RRD decreases with age. Autoimmunity to type I IFNs appears to be second only to age among common predictors of COVID-19 death.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL